mirror of
https://github.com/brmlab/ledbar.git
synced 2025-06-09 13:24:01 +02:00
cellular.py: impleement a individual color mode. Default setting
is pretty vivid and good to go.
This commit is contained in:
parent
6165044591
commit
62602ef940
1 changed files with 48 additions and 32 deletions
|
@ -1,6 +1,6 @@
|
||||||
#!/usr/bin/python
|
#!/usr/bin/python
|
||||||
"""
|
"""
|
||||||
An elementary 2D celluar automata implementation for the ledbar in brmlab.
|
An elementary 2D cellular automata implementation for the ledbar in brmlab.
|
||||||
For some fun rules, try:
|
For some fun rules, try:
|
||||||
30: near-random behavior
|
30: near-random behavior
|
||||||
22: gives a symmetric triangle pattern. It just looks like splitting cells and gets
|
22: gives a symmetric triangle pattern. It just looks like splitting cells and gets
|
||||||
|
@ -10,15 +10,16 @@ empty quickly, though.
|
||||||
51: likes to blink.
|
51: likes to blink.
|
||||||
|
|
||||||
The color mode encodes individual bits into, well, colors. Not too exciting,
|
The color mode encodes individual bits into, well, colors. Not too exciting,
|
||||||
but sure more colorful.
|
but sure more colorful. The individual color mode generates a separate
|
||||||
|
iteration plane for each color, which works the best with a random starting
|
||||||
|
state.
|
||||||
You can choose between a single pixel or a random starting row.
|
You can choose between a single pixel or a random starting row.
|
||||||
|
|
||||||
By setting TOTALISTIC to True and adding proper rules, you get continuous
|
By setting TOTALISTIC to True and adding proper rules, you get continuous
|
||||||
totalistic 1D celluar automata. The basic rule mostly just fades out and
|
totalistic 1D cellular automata. The basic rule mostly just fades out and
|
||||||
in again: it looks like triangles on a plane. But tell me if you find some
|
in again: it looks like triangles on a plane. But tell me if you find some
|
||||||
more interesting rule!
|
more interesting rule!
|
||||||
The RULE format for totalistic automta is a dictionaries of functions which get
|
The RULE format for totalistic automta is a dictionary of functions which get
|
||||||
passed the sum of the above three pixels. The keys are conditions, if one
|
passed the sum of the above three pixels. The keys are conditions, if one
|
||||||
returns true, the value is executed. (Thus they shouldn't overlap.)
|
returns true, the value is executed. (Thus they shouldn't overlap.)
|
||||||
|
|
||||||
|
@ -32,12 +33,13 @@ import random
|
||||||
from ledbar import Ledbar
|
from ledbar import Ledbar
|
||||||
|
|
||||||
PIXELS = 20
|
PIXELS = 20
|
||||||
PIXEL_MODE = ('bw', 'color')[0]
|
PIXEL_MODE = ('bw', 'color', 'individual_color')[2]
|
||||||
START = ('single', 'random')[1]
|
START = ('single', 'random')[1]
|
||||||
TOTALISTIC = True
|
TOTALISTIC = True
|
||||||
#RULE = 30
|
#RULE = 30
|
||||||
RULE = {(lambda t: True): (lambda t: (t+0.9) % 1)}
|
RULE = {(lambda t: True): (lambda t: (t+0.98) % 1)}
|
||||||
SLEEP = 25
|
#RULE = {(lambda t: t > 5): (lambda t: (t+-0.6) % 1), (lambda t: t <= 5): (lambda t: (t+0.9) % 1)}
|
||||||
|
SLEEP = 10
|
||||||
|
|
||||||
WIDTH = PIXELS
|
WIDTH = PIXELS
|
||||||
if PIXEL_MODE == 'color': WIDTH *= 3
|
if PIXEL_MODE == 'color': WIDTH *= 3
|
||||||
|
@ -50,13 +52,22 @@ if not TOTALISTIC:
|
||||||
rules = dict(zip(((1,1,1), (1,1,0), (1,0,1), (1,0,0), (0,1,1), (0,1,0), (0,0,1), (0,0,0)), bits(RULE)))
|
rules = dict(zip(((1,1,1), (1,1,0), (1,0,1), (1,0,0), (0,1,1), (0,1,0), (0,0,1), (0,0,0)), bits(RULE)))
|
||||||
|
|
||||||
|
|
||||||
iteration = [0]*WIDTH
|
iterations = []
|
||||||
if START == 'single':
|
iterations.append([0]*WIDTH)
|
||||||
iteration[WIDTH//2] = 1
|
if PIXEL_MODE == 'individual_color':
|
||||||
elif START == 'random':
|
iterations.append([0]*WIDTH)
|
||||||
iteration = list((random.randint(0, 1) if not TOTALISTIC else random.random()) for i in iteration)
|
iterations.append([0]*WIDTH)
|
||||||
|
|
||||||
def iterate(iteration):
|
if START == 'single':
|
||||||
|
for it in iterations:
|
||||||
|
it[WIDTH//2] = 1
|
||||||
|
elif START == 'random':
|
||||||
|
for j, it in enumerate(iterations):
|
||||||
|
iterations[j] = list((random.randint(0, 1) if not TOTALISTIC else random.random()) for i in it)
|
||||||
|
|
||||||
|
|
||||||
|
def iterate(iterations):
|
||||||
|
for j, iteration in enumerate(iterations):
|
||||||
new = []
|
new = []
|
||||||
iteration.insert(0, 0)
|
iteration.insert(0, 0)
|
||||||
iteration.append(0)
|
iteration.append(0)
|
||||||
|
@ -71,14 +82,19 @@ def iterate(iteration):
|
||||||
new.append(func(sum(top)/3))
|
new.append(func(sum(top)/3))
|
||||||
else:
|
else:
|
||||||
new.append(0)
|
new.append(0)
|
||||||
return new
|
iterations[j] = new
|
||||||
|
return iterations
|
||||||
|
|
||||||
def update(i):
|
def update(i):
|
||||||
visible = iteration[(len(iteration)//2)-(WIDTH//2):(len(iteration)//2)+(WIDTH//2)]
|
visibles = []
|
||||||
|
for iteration in iterations:
|
||||||
|
visibles.append(iteration[(len(iteration)//2)-(WIDTH//2):(len(iteration)//2)+(WIDTH//2)])
|
||||||
if PIXEL_MODE == 'bw':
|
if PIXEL_MODE == 'bw':
|
||||||
return (visible[i], visible[i], visible[i])
|
return (visibles[0][i], visibles[0][i], visibles[0][i])
|
||||||
elif PIXEL_MODE == 'color':
|
elif PIXEL_MODE == 'color':
|
||||||
return (visible[3*i], visible[3*i+1], visible[3*i+2])
|
return (visibles[0][3*i], visibles[0][3*i+1], visibles[0][3*i+2])
|
||||||
|
elif PIXEL_MODE == 'individual_color':
|
||||||
|
return (visibles[0][i], visibles[1][i], visibles[2][i])
|
||||||
|
|
||||||
l = Ledbar(PIXELS)
|
l = Ledbar(PIXELS)
|
||||||
work = True
|
work = True
|
||||||
|
@ -90,4 +106,4 @@ while work:
|
||||||
work = l.update()
|
work = l.update()
|
||||||
t += 1
|
t += 1
|
||||||
if not (t % SLEEP):
|
if not (t % SLEEP):
|
||||||
iteration = iterate(iteration)
|
iterations = iterate(iterations)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue